The New Low Sulphur Marine Fuels

for Compliance with

the 2020 IMO Emission Control Regulations

the Impact to

Insurance Market & Machinery Claims

GEORGE D. MARGETIS | Naval Architect & Marine Engineer B.S.E., M.S.E. (MIT)

Managing Director — Associate Member of the Association of Average Adjusters

We remain up to speed...

- International Marine Claims Conference (IMCC),
 Dublin, Sept. 2018
- 2. Asian Maritime Law & Insurance Conference (AMLIC), Singapore, Oct. 2018
- Luncheon Presentation Event by MMC,London, Nov. 2018
- 4. Lloyd's Asia Marine Development Group,
 Singapore, April 2019

Low Sulphur Fuels?

- The 2020 Regulations are all about reducing Sulphur (SOx)
- The whole process commenced about a decade ago
- But it peaks in 2020

Can anyone recall, what happened when SOx were initially reduced, some 10 years ago?

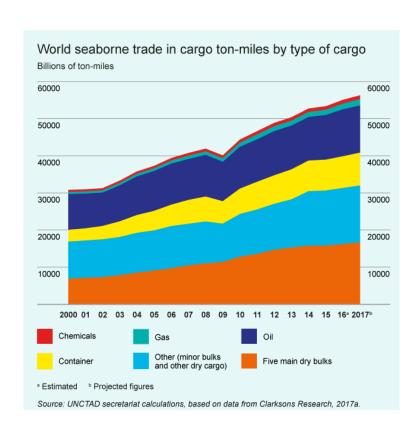
Beware...

Catalytic Fines!

The Outline

- ☐ What is it all about The punch line
- ☐ Compliant fuel oils Primary Solution
- ☐ Scrubbers Secondary Solution
- ☐ Marine Claims Consequences
- Remedies
- Conclusions

The Outline



What is it all about – The punch line

- ☐ Compliant fuel oils Primary Solution
- ☐ Scrubbers Secondary Solution
- Marine Claims Consequences
- Remedies
- Conclusions

Why Shipborne Air Emissions were adopted?

- Diesel engines 90% of the world's ocean going ships
- → heavy fuel oils practical and cheap

BUT contain

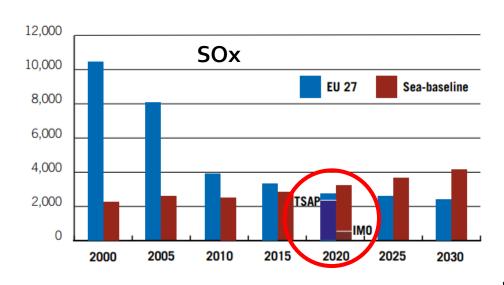
- sulphur oxides (SOx)
- nitrogen oxides (NOx)
- carbon dioxide (CO2)
- particulate matter (PM)
- Chemical reactions in the atmosphere → SOx and NOx converted into fine particles (sulphate and nitrate aerosols) with significant health impacts

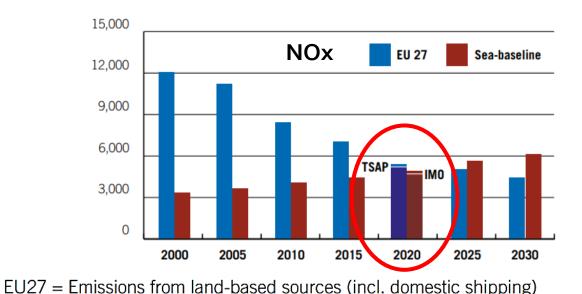
Some statistics...

Air pollution from international shipping accounts approximately for <u>50,000 premature deaths per year</u> in Europe, at an annual cost to society of more than <u>€58 billion</u>

International ship traffic is responsible for an estimated 7% of the total health effects in Europe due to air pollution in the year 2000, increasing to **12% in the year 2020**

Some statistics...

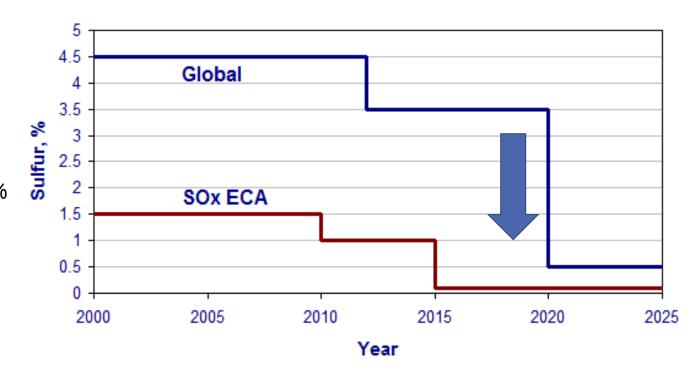



- More than 570,000 premature deaths avoided (2020-2025)
- 68% overall reduction in shipping's negative effect on human health through air pollution

How are shipping emissions compared to land based emissions?

Pollutant emissions from <u>land-based sources gradually coming</u> down **BUT** those from <u>shipping</u> show a continuous increase

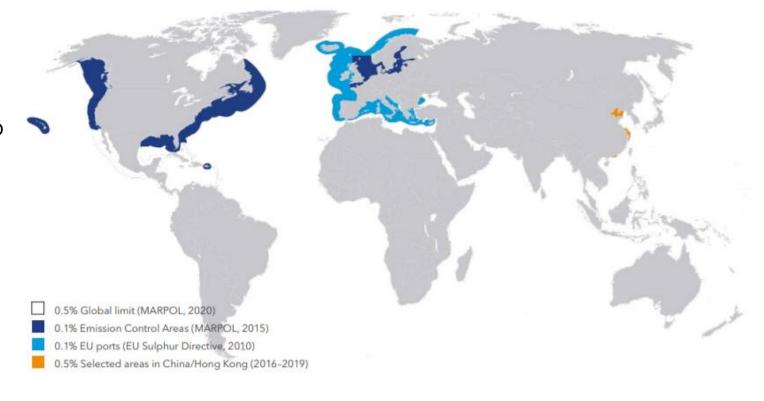
Sea = Emissions from international shipping in European sea areas
TSAP = Target in line with the EU's Thematic Strategy on Air Pollution
IMO = Expected outcome from implementing the revised IMO MARPOL Annex VI


Source: Air Pollution & Climate Secretariat

Which are these regulations?

MARPOL Annex VI Regulations for the Prevention of Air Pollution from Ships

- Sulphur oxide (SOX) from 3.5% to 0.5% in
 2020 globally
- Emission Control Areas (ECAs) from 1% to
 0.1% in 2015
- Crude oil sulphur ranging from 0.1% to 4.1%
- As per IMO MEPC 72 committee, annual average in 2017 around 2.6% → well above
 2020 limits



ECAs

MARPOL Annex VI Regulations for the Prevention of Air Pollution from Ships

- Baltic Sea area (SOx only);
- North Sea area (SOx only);
- North American area (entered into effect 1 August 2012SOx, NOx and PM);
- United States Caribbean Sea area (entered into effect 1 January 2014 SOx, NOx and PM)

Fueling the solution: there is no one-size-fits-all!

Primary Methods

- ☐ Low-sulphur fuels
- Using low-sulphur FO or MGO (max 0.5%) globally and ultra-low-sulphur FO or low sulphur MGO (max 0.1%) in ECAs

- ☐ Gas or dual-fuel engines
- Using Liquefied Natural Gas (LNG) as fuel

Secondary Method

- Exhaust Gas Cleaning Systems
- Burning HFO (3.5%) with scrubber installed

Cost

of Measures about

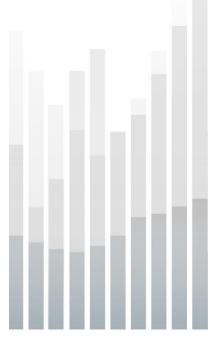
50 billion USA dollars / per year

The Outline

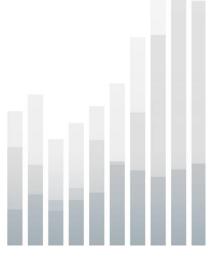
☐ What is it all about – The punch line

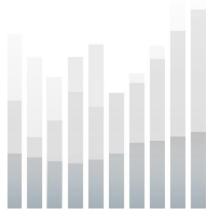
Compliant fuel oils – Primary Solution

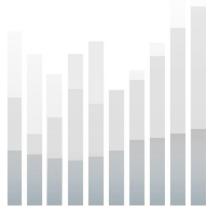
- ☐ Scrubbers Secondary Solution
- Marine Claims Consequences
- Remedies
- Conclusions



Fuel Types	Category	Viscosity Range (cSt)	Sulphur Content Range (%)	Price Range (\$)
150.0	D : 1 1			
IFO 180	Residual	180	1.0 – 3.5	470
HFO 380	Residual	380	1.0 – 3.5	435


Fuel Types	Category	Viscosity Range (cSt)	Sulphur Content Range (%)	Price Range (\$)
MDO	Distillate	10	0.1-1.5	630
MGO	Distillate	5	0.1-1	630
IFO 180	Residual	180	1.0 – 3.5	470
HFO 380	Residual	380	1.0 – 3.5	435


Fuel Types	Category	Viscosity Range (cSt)	Sulphur Content Range (%)	Price Range (\$)
MDO	Distillate	10	0.1-1.5	630
MGO	Distillate	5	0.1-1	630
0.1% HFO	Not standardized	tandardized 70 < 0.1		610
o.5% HFO	Not standardized	70	< 0.5	6??
IFO 180	Residual	180	1.0 – 3.5	470
HFO 380	Residual	380	1.0 – 3.5	435


Fuel Types	Category	Viscosity Range (cSt)	Sulphur Content Range (%)	Price Range (\$)
MDO	Distillate	10	0.1-1.5	630
MGO	Distillate	5	0.1-1	630
0.1% HFO	Not standardized	70	< 0.1	5??
o.5% HFO	Not standardized	70	< 0.5	5??
IFO 180	Residual	180	1.0 – 3.5	470
HFO 380	Residual	380	1.0 – 3.5	435

Fuel Types	Category	Viscosity Range (cSt)	Sulphur Content Range (%)	Price Range (\$)
MDO	Distillate	10	0.1-1.5	630 / <mark>580</mark>
MGO	Distillate	5	0.1-1	630 / <mark>580</mark>
0.1% HFO	Not standardized	70	< 0.1	5?? / 570
o.5% HFO	Not standardized	70	< 0.5	5?? / 5??
IFO 180	Residual	180	1.0 – 3.5	470 / <mark>450</mark>
HFO 380	Residual	380	1.0 – 3.5	435 / <mark>410</mark>

Beware...

Higher Cost of Fuel!

Threats due to...

- Instability
- Incompatibility
- Comingling of Fuels
- Cat Fines
- ☐ Cold Flow Properties Pour Point
- Combustion Issues
- ☐ Flash Point

New fuels do not fit fully into either the Residual or Distillates grades of the ISO 8217 specification!

What will happen after 2020...

PARAFFINS

NAPHTHENES

AROMATIC

Pre 2020 - TODAY

Post 2020 - TOMORROW

Special to thanks to Bill Stamatopoulos, Business Development Manager South Europe, VeriFuel

Ref: KBC/Mel Larson

Incompatibility – Instability

- Refineries: Blending fuels for producing a compliant blend may sacrifice final product stability!
- Also final products with varying properties...

Huge variations in viscosity, density and cold flow properties

PRODUCTS	Α	В	С	D	E	
Density (kg/m³)	911.6	955.2	942.3	920.5	950.4	
Viscosity (cSt)	35.4	72.0	232	13	327.8	
Pour Point (°C)	24	15	9	<21	<21	
Min Storage temp (°C) for 800 cSt or lower	34	30	35	30	40	
Temp (°C) separator	60	98	98	40	98	Þ
Temp (°C) for 12.5 cSt injection viscosity	82	100	126	51	133	

Comingling of fuels

- When blending compliant BUT incompatible fuels with very different properties
- Lack of homogeneity
- As if mixing oil and water!
- Excessive sludge formation
- Stick fuel pumps
- Centrifuges blocked
- Clogged up filters
- Reduce flow rate or even cut off fuel supply to engine

Cat Fines

Small, hard, diamond-like particles in fuel, embedded in Piston rings and cylinder liners

Accelerated wear in <u>combustion chamber components</u>:

- Cylinder liners
- Piston grooves
- Piston rings

Accelerated wear in <u>fuel injection components</u>:

- Fuel pumps (plunger and barrel)
- Fuel injection valves

Cold flow properties - Pour point Issues

Definition:

 The Pour Point is the temperature at which the paraffin in the fuel has crystallized to the point where the fuel gels and becomes resistant to flow

2020 fuels tend to have higher Pour Point:

- Wax formation
- Filters and equipment blocking
- Solid fuel

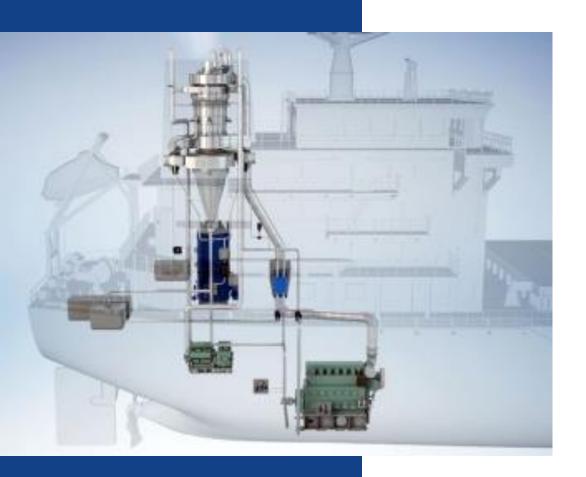
If heated, lower viscosity:

- Poor combustion
- Deposit formation
- Boiler damages
- Loss or engine power

Flash Point

Definition

- The lowest temperature at which Diesel vapors would ignite given an ignition source
- The lower the Flash Point, the easer to ignite!


Flash points below 60°C:

- The International Standard Organisation (ISO), warns that present Flash Point test for new 2020 fuels (especially BLENDS) could be UNRELIABLE!
- Increased fire / explosion risk

The Outline

- ☐ What is it all about The punch line
- ☐ Compliant fuel oils Primary Solution

Scrubbers – Secondary Solution

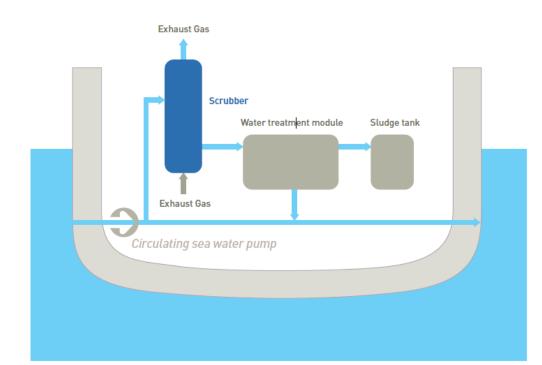
- Marine Claims Consequences
- Remedies
- Conclusions

What is a scrubber?

- Main principle → washing the exhausts prior releasing to the atmosphere
- Converts SOx to <u>harmless sodium sulphate</u>

3 Main Types:

- Open Loop
- Close Loop
- Hybrid


Open Loop: Uses untreated seawater and washwater is discharged at sea

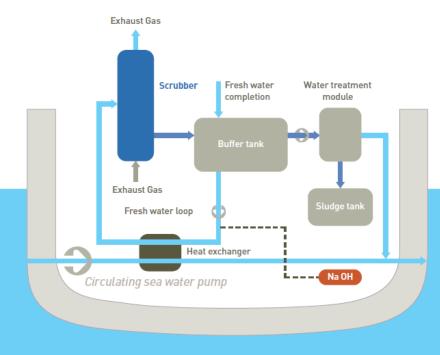
- Untreated seawater of natural alkalinity (<u>no need for chemical additives</u>)
- Quite high pumping capability required
- Efficiency increases in higher alkalinity waters
- ✓ Washwater <u>discharged into the sea</u> after being treated

BUT

- Greater energy consumption compared to a close loop system
- Not permitted to discharge washwater everywhere

Closed Loop: Uses caustic soda and washwater is not discharged at sea

✓ <u>Caustic soda</u> added to fresh or sea water in a closed system (not dependent on the type of the

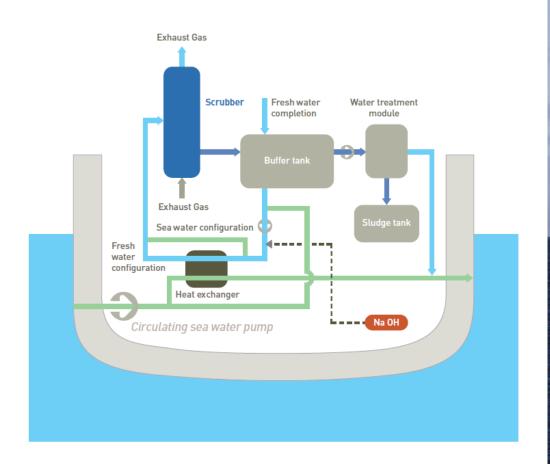

water/alkalinity levels)

 Wash water passes into a <u>process tank</u> where it is cleaned before being <u>recirculated</u> with a small discharge overboard

✓ The amount of the water needed is about <u>half of the flow</u> in an open loop system

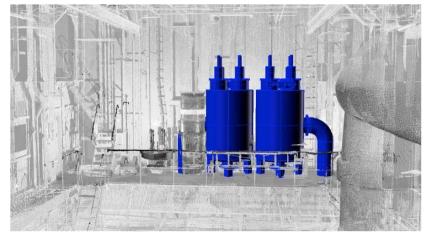
BUT

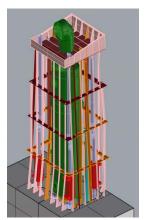
More tanks are required and system is more <u>complex</u> than open

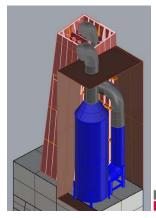

Hybrid: Combined open and closed loop

- Flexibility to either use closed loop or open loop technology
- Used as an open loop system when in open sea and as a closed loop system when in harbour
- ✓ Increasingly <u>preferred</u> given its flexibility

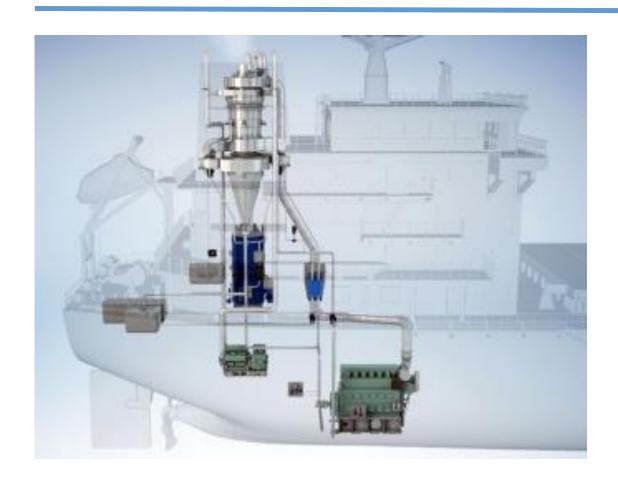
BUT


Increased <u>cost</u> and more <u>complex</u> system than open & closed loop


Which are the main parameters to consider when choosing system?


- Newbuilding vs retrofit
- Operating route
- Space availability onboard
- ✓ Capital vs operational costs
- ✓ Price differential between low sulphur and heavy fuel
- ✓ Sludge handling and disposal
- Availability of heavy fuel oil

<u>In Line</u>


U type

A prediction...

As per Wood MacKenzie, by 2020 only 2-3% of total fleet will have installed scrubbers...

63% of Installed Scrubbers are OPEN Loop...

- ➤ If only 2-3% of vessels will have scrubbers, will there be HFO readily available worldwide?
 - Imagine a terminal having to maintain a bunkering barge only for such a small amount of clients for HFO
 - Big players with scrubbers will have contracts with terminals for HFO at a pre-agreed price
- If majority of scrubbers are open loop how can we ensure that disposal will not be **prohibited in the future** in areas, such as the Baltic, North Sea etc.?

IUMI Webinar - London, 7th May 2019

Port restrictions apply....

Ports or countries that ban open-loop scrubbers

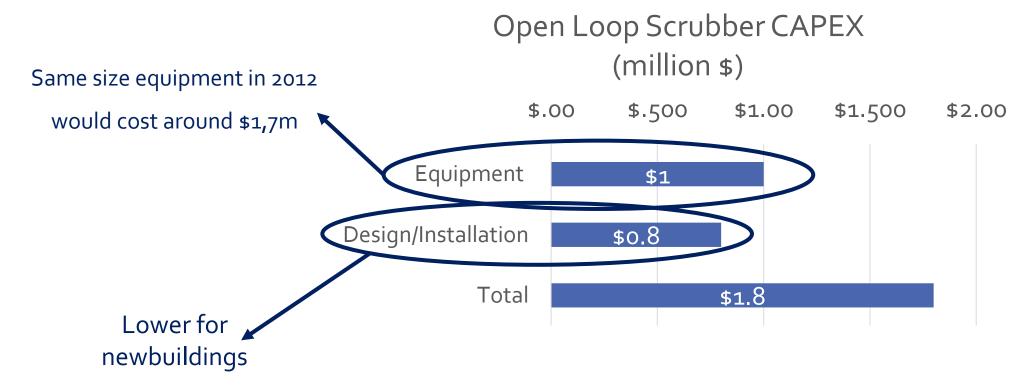
- Singapore
- China
- Fujairah
- Norway
- Belgium (ports and inland waters)
- Dublin, Ireland

- Waterford Ireland
- Germany (inland waterways, canals and ports in inland waters)
- Californian ports and waters
- Connecticut ports and waters

On the other hand...

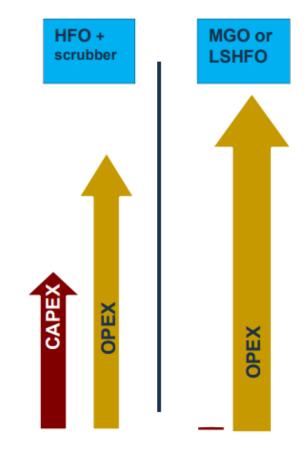
 Japan has ruled out open-loop scrubber ban

Singapore


ban imposed end November 2018

Scrubbers Installation Costs

- Equipment prices have dropped significantly from the previous years
- Example for a Panamax Bulk Carrier retrofit



Reference vessel	Panamax Bulk Carrier		
Average Percentage Spent in SECA	20%		
Average Percentage Spent outside SECA	80%		
Fuel Cost Differential	\$150.00	\$200.00	\$250.00
Additional Yearly Costs if NO technology installed	\$759,000	\$1,012,000	\$1,265,000
Yearly Savings if Scrubber installed	\$938,750	\$1,255,000	\$1,571,250
Return period (years)	2	1.4	1

Source: Bureau Veritas

Companies are divided....

In favor of scrubbers

Still thinking about it...

The Outline

- ☐ What is it all about The punch line
- Compliant fuel oils Primary Solution
- ☐ Scrubbers Secondary Solution

Marine Claims Consequences

- Remedies
- Conclusions

Impact to the insurance market

Scrubbers

- New machinery
- Water in engine combustion chamber
- <u>LOH</u> for complex damages

- → overheating damages similar to boilers
- → machinery malfunction/damages
- → idle vs expensive low sulphur fuels

Impact to the insurance market

MGO/MDO Advantages:

- Convenient and widely available
- Operational experience in industry
- Cleaner fuel less machinery related malfunctions

Compliant fuel oil blends:

- Low quality/out of spec bunker
- May contain cat fines as products of refinery streams
- Compatibility and stability issues
- Lubricity issues

Compliant low sulphur fuels

- Cat fines
- New blend of fuels / <u>uncertainties</u>

VS

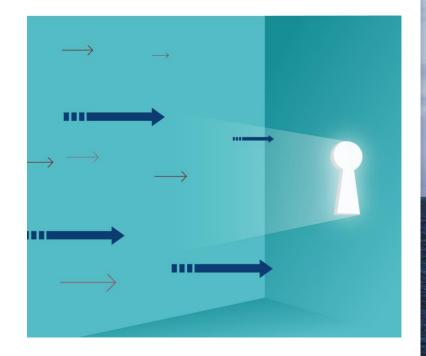
- Fuel <u>incompatibility</u>
- Different <u>properties</u> (viscosity, pour point etc.)

- → main cause of machinery failures
- → combustion issues
- → sludge accumulation, dedicated tanks
- → overheating, delicate changeover procedures

Beware...

More Combustion Related Claims!

- ☐ What is it all about The punch line
- ☐ Compliant fuel oils Primary Solution
- ☐ Scrubbers Secondary Solution
- ☐ Marine Claims Consequences


Remedies

Conclusions

Are there any remedies?

- ☐ Incompatibility instability from <u>supply</u>
- Burn MGO only cost issue!
- Bunker from reputable bunker suppliers
- Include detailed fuel specification, handling and sampling requirements in Charterparty Fuel clause
- Always sample bunkers and assess lab results before using fuel

Are there any remedies?

- ☐ Incompatibility resulting from <u>comingling</u> of fuels onboard
- ☐ Improper onboard <u>handling</u> setting of combustion parameters

Fuel suppliers responsible for the stability of the delivered fuels

BUT

competency of the crew when mixing incompatible fuels from different suppliers/locations

or

not handling the fuel according to its specific parameters

- Increased bunker segregation avoid mixing fuels from different suppliers in same tanks always check compatibility before doing so
- Never mix at a ratio 50-50% preferred ratio at least 3:1
- Develop specific onboard plans and procedures for fuel segregation, compatibility testing and handling

Are there any remedies?

Cat Fines

- Appropriate settling at required temperatures
- Settling tanks drain / cleaning
- Efficient purification at correct temperatures / feed rate
- Appropriate selection of purifier disc based on fuel density
- Extra care with purification after encountering bad weather
- Careful monitoring of fuel filters
- Bunkers analysis in lab and analysis before and after purifier every 6 months or for elevated cat fines levels

Conclusion - Are there any remedies?

- Gas Oil
- Bunker suppliers
- F.O. sample testing
- Avoid mixing of bunkers
- Ultra-Correct Onboard Fuel Management Plan

Ultra-Correct Onboard Fuel Management Plan

- The Principle of "Safety Factor" in Engineering
- The Example of the Elevator Capacity Limit
- The "Safety Factor" will "excuse" human error ("Negligence"), misuse or abuse of the machinery
- Before 2020 Safety Factor for errors / omissions in Fuel Management Plan was HIGH
- With "2020 Low Sulphur Fuels" the Safety Factor DECREASES Every mistake will hurt !!!

Beware...

More Crew Negligence Claims!

The Outline

- ☐ What is it all about The punch line
- ☐ Compliant fuel oils Primary Solution
- ☐ Scrubbers Secondary Solution
- Marine Claims Consequences
- Remedies

Conclusions

Let's revisit this question...

To what extent do you consider that the 2020 IMO regulations will affect machinery related claims?

- Reduce
- 2. Not Affect
- 3. Insignificant Increase
- 4. Considerable Increase

The MARGETIS MARITIME CONSULTING Guidelines

2020 Regulations for the Prevention of Air Pollution from Ships

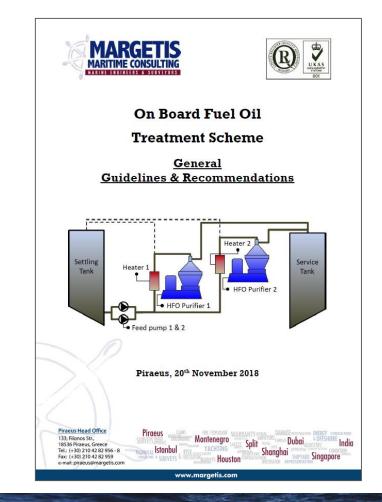
IMO MARPOL Annex VI

New Low Sulphur Fuel Oils Threats

From a Surveyor's Perspective

Piraeus, 8th October 2018

by


George D. Margetis, B.S.E., M.S.E. (MIT)
Managing Director of Margetis Maritime Consulting

8

Ioanna Kafka, MEng, MSc, Naval Architect & Marine Engineer

www.margetis.com

Some conclusions and further food for thought...

1. Gas Oil versus New Very Low Sulphur Fuel Oil (0.5%)

- Big quality difference
- Currently moderate price difference
- Owners / Charterer will go for the less expensive
- Delicate handling required New fuels still not categorized according to ISO 8217

2. Problems

- Cat Fines and extraordinary / accelerated wear
- Inappropriate onboard handling (combustion issues)
- Fires / explosions (flash point issues)
- Clogged injectors / pumps & engine stoppages (blends and comingling of fuels)

3. Remedies

- Nothing entirely new, however necessity for Ultra-Correct Onboard Fuel Management Plan
- Delicate Procedures and Every Mistake will HURT!!

Further food for thought...

AFRAMAX TANKERS - SISTERSHIPS (10 YEARS OLD)

AFTER 1ST JANUARY 2020

No Scrubber – Low Sulphur Fuels

Value: 20 Mil USD

<u>Issues Raising Risk</u>

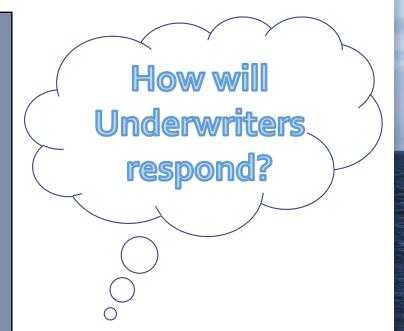
*Uncertainties with burning new Low Sulphur Fuels

Issues Reducing Risk

*Lower Value
*No New Machinery

Fitted with Scrubber – HFO

Value: 23 Mil USD


Issues Raising Risk

*New operational hazards / new piece of machinery equipment

*Higher Insurance Value

Issues Reducing Risk

*Experience / stability of old fashion fuels

Our final word....

More Combustion Related Claims!

More Crew Negligence Claims!

IUMI Webinar

IUMI Webinar - London, 7th May 2019

GEORGE D. MARGETIS | Naval Architect & Marine Engineer B.S.E., M.S.E. (MIT)

Managing Director — Associate Member of the Association of Average Adjusters

Piraeus Head Office

133, Filonos str., 185 36 Piraeus - Greece

Tel.: +(30) 210 42 82 956-8

e-mail: piraeus@margetis.com

Regional Offices

Istanbul Office

Aydinliyolu Cad. No 137, 14th Floor, Apt No 68 Pendik, Istanbul - Turkey

Tel: +90 (216) 504 5119 - 20, e-mail: istanbul@margetis.com

Houston Office

One Harbour Square, Suite 355, 3027 Marina Bay Drive, League City, Houston, TX 77573, USA Tel.: + 1 (512) 994.9531, e-mail: houston@margetis.com

Split Office

Smiljanica 2/II, HR-21000 Split - Croatia Tel.: +385 (21) 544 265, e-mail: split@margetis.com

Shanghai Office

Yonghe Road 398, Nantong, Jiangsu, Shanghai, P. R. China Tel: +86 (513) 89085515, e-mail: shanghai@margetis.com

Montenegro Office

Adriatic Shipyard, Bijela 85343 - Montenegro Tel: +(382) 31 671017, e-mail: adriatic@margetis.com

Dubai Office

908, Mohammed Al Mulla Tower, Al Ittihad Road, P.O.Box 32658, Sharjah, Dubai, U.A.E.

Tel: +(971) 6 5638938, e-mail: dubai@margetis.com

Singapore Office

50, Chin Swee road #08-02, Thong Chai Building, Singapore (169874)
Tel.: +65 82226580 (SIN), e-mail: singapore@margetis.com

idia Office

D-604, Raikar Chambers, Off K.D.Marg, Govandi (E)

Mumbai - 400 088, India

Tel.: + 91 22255 00500, e-mail: india@margetis.com

Thank you!

- 1. Feedback questionnaire
- 2. IUMI Online Tutorials
 - Hull
 - Cargo

https://iumi.com/education/online-tutorials